How Can You Check that the Earth Spins? (2023)

Well, now that we’ve seen how easily anyone who wants to can show the Earth’s a sphere and measure its size — something the classical Greeks knew how to do, using slightly more subtle methods — it’s time to face a bigger challenge that the classical Greeks never figured out. How can we check, and confirm, that the Earth is spinning daily, around an axis that passes through the north and south poles?

We definitely need techniques and knowledge that the Greeks didn’t have; the centuries of Greek astronomy included many great thinkers who were too smart to be easily fooled. The problem, fundamentally, is that it is not obvious in daily life that the Earth is spinning — we don’t feel it, for reasons worthy of a future discussion — and it’s not obvious in astronomy either, because it is hard to tell the difference between the Earth spinning versus the sky spinning. In fact, if it’s the sky that’s spinning, it’s clear why we don’t feel the motion of the Earth’s spin, whereas if the Earth is spinning then you will need to explain why we don’t feel any sense of motion. Common sense tells us that we, and the Earth, are stationary. So even though many people over the centuries did propose the Earth is spinning, it was very hard for them to convince anyone; they had neither the right technology nor a coherent understanding of basic physics.

Broken Symmetry

One way to differentiate a rotating Earth from a non-rotating one is to focus on the notion of symmetry. On a non-rotating featureless ball, even if we define it to have north and south poles, there’s no difference between East and West. There’s a symmetry: if you look at a mirror image of the ball, West and East are flipped, but there’s nothing about the ball that looks any different.

But if the ball rotates, this is no longer true. If the ball rotates from west to east, as our Earth does, then the mirror image of the ball rotates from east to west.

This breaking of the symmetry between the ball and its east-west mirror image allows something new to happen. On the symmetric, non-spinning ball, anything that can move eastward should be just as likely to move westward. On the asymmetric ball, this is no longer true. A rotating planet might (as ours does) have a tendency for its storms near its north and south poles to move mainly from west to east, and at other latitudes, closer to the equator, from east to west; but on a non-rotating planet there should be no such tendencies at any latitudes. The weather bands and jet streams on Earth are different when viewed in a mirror, and provide already a clear signal that the West-versus-East symmetry has been broken.

See for example the 7-day pattern over the United States, at a latitude where all the storms move eastward, southward or northward, but almost never westward.

But as far as I know, these weather patterns weren’t well-understood in classical Greek times or even well into the Renaissance. Perhaps this is why no one used them as evidence for a rotating Earth.

A Loophole

So the fact that weather is asymmetric east to west but not north to south is an argument that the planet must be rotating around an axis that passes through the north and south poles. But this argument, while correct, isn’t self-evident. If you thought the Earth wasn’t spinning, you’d then think the Sun goes round the Earth once a day from east to west. This motion, too, breaks the symmetry. Can we be sure that the asymmetries in the Earth’s weather aren’t simply due to this orientation of the Sun’s motion across the sky, which would cause the warmest air to be found at locations that move east to west across the Earth’s surface?

While the motion of the Sun’s warmth certainly wouldn’t cause the weather patterns we see on Earth, this isn’t immediately obvious… not unless you know a good bit of physics and geometry. And if you do, you’re already convinced the Earth rotates, so this conversation becomes unnecessary.

The point here is to give the average person who knows little or no physics, and is armed with common sense that makes physics extremely difficult to understand, an argument that doesn’t require lots of footnotes and complicated pictures. Weather patterns are a powerful argument for the Earth’s rotation, but, psychologically speaking, it would be better to find something less indirect and complex.

The Coriolis Effect

Even Isaac Newton, who was sure the Earth spins daily, wasn’t aware of a good way to prove it. He did point out that a rapidly rotating sphere, if made of a uniformly dense substance, would tend to become a bit squashed. Imagine taking a ball of pizza dough and spinning it really fast; you would expect it to become a disk. In the case of the Earth, it’s not so dramatic, but the Earth’s spin does cause the Earth to be about 1% fatter at the equator than it is on average. But this is too small an effect for ordinary people to easily check.

A much more subtle and interesting insight is called the Coriolis effect, though despite the name (Coriolis wrote his paper about this in 1835) it was already partly known in the mid-1600s. (I’m not aware of Isaac Newton commenting on it; perhaps he thought it unnecessary to point out something so obvious to him?) It was already noticed by Giovanni Battista Riccioli and by Claude Francis Milliet Dechales that on a rotating Earth, cannonballs wouldn’t appear to travel in straight lines as viewed by someone on the rotating ground. In the northern hemisphere, they’d seem to curve slightly to the right, and in the southern hemisphere to the left.

But in the 1600s the effect hadn’t been observed yet; it is too small in daily life and wasn’t easy to detect even by those who made a dedicated effort. In fact, in one of those lovely ironies of history, the fact that the effect hadn’t been detected (yet) was used by both Riccioli and Deschales as an argument against a rotating Earth. (Such ironies continue to the present day, as we’ll soon see.) But the effect has been easy to observe for centuries; in fact, if a nation disbelieves it, their artillery and rocketry will be inaccurate and their military will soon be defeated. As an example [apparently this widespread story is false. What’s true is that long-range artillery does need to consider the Coriolis effect, which is typically comparable in size to the effects of wind.], consider a little mix-up that confused the British navy artillery during a World War I battle with German ships in the Falkland islands, off South America. Though the British of course knew about the Coriolis effect and were correcting for it when aiming at the German ships, they were consistently missing their targets to one side. That’s because in the southern hemisphere the Coriolis effect is in the opposite direction from what the British were accustomed to in the northern hemisphere, and someone in the gunnery chain of command had failed to account for this.

It is not so hard to understand the Coriolis effect, if you are standing at the Earth’s north or south pole. If you throw anything from the north pole, it will travel south along a great circle, and since you are spinning to your left at that pole, the object you threw will appear to you to gently curve to the right. The reverse is true at the south pole, where objects will appear to curve to the left.

But at other latitudes, where most people observe these things, there are multiple axes and angles to keep track of, and so the connection with the Earth’s rotation becomes abstract, even though the argument is solid. And that’s the problem with the Coriolis effect — where it matters most, it’s hard to visualize. In the figure above I’ve given you the simple case of a ball thrown east, but in other directions the argument is harder to draw.

The Coriolis effect on storms is particularly dramatic, so it would be great if every child could understand it. But to see how it works, you need to convince someone that even away from the north pole, if you send a projectile off in any direction traveling in a straight line, its trajectory will seem to you as though it curves to the right (if you are in the northern hemisphere) or left (if in the southern). This is easy to see for objects moving east, as shown above, but not so easy in general. Even if you can succeed in this, to then complete the argument that it causes storms to spin counterclockwise (not clockwise, which would seem to be to the right) requires yet another discussion. So this is not easy.

The Foucault Pendulum

The original and classic method for showing the Earth rotates involves the Foucault pendulum, also known as the big big pendulum. Foucault noted that a pendulum on a rotating Earth should itself appear to rotate, and he had one installed in his home city of Paris, to great public acclaim.

Daily experience with swinging objects would lead us to expect a pendulum to swing back and forth covering the same territory over and over again. This is not exactly true on a rotating planet. Again, this is easy to explain at the north pole, but not so easy at other latitudes. At the north pole, you can understand it easily as the pendulum swinging back and forth in a fixed plane, while the Earth and its support structure rotate underneath it, making it seem to a standing observer as though the pendulum is rotating once a day.

But now go, say, to New York City; why, in that location, does it take about a day and a half for a Foucault pendulum to rotate? Why does it take multiple days if you are in Panama City, or in Lima, Peru? While this is not so terribly hard to get straight if you know some vector analysis and trigonometry, it’s quite confusing if you don’t. Also, though it’s not too hard to invest in a Foucault pendulum if you are a science museum with a very high ceiling and lots of room, along with technical expertise, it’s not something you can easily do at home.

By the way, these problems bothered Foucault, too. He wanted a more intuitive, simpler method, and he invented one. But although it worked to a degree, it was too far ahead of the technology of its time. More on that in the next post.

The 21st Century Night Sky and a Rotating Earth

Here’s a completely different approach. We started with the observation that if the Earth rotates, then there should be something different about west-to-east than east-to-west — something other than the direction of the Sun’s motion across the sky. If we can find evidence of something that differentiates these two directions but has nothing to do with the Sun’s heating and weather, we might be convinced that the Earth is rotating.

So head out in the middle of the night and stare up at the stars, the Moon, and the planets. Of course, just as the ancient Greeks did, you’ll see these objects in the sky move slowly across the sky. But by looking at these ancient objects, you will not learn anything the Greeks did not know, and they were unable to prove that the Earth rotates.

There is something, however, that you can see that the classical Greeks could not. More and more commonly, as near-Earth orbits fill with thousands of satellites and pieces of space junk, you will see rapidly moving bright objects that don’t flicker like a plane but aren’t near-stationary like a star; they cross the sky in just a few minutes as they orbiting the entire Earth once every hour and a half or so. If you watch for a while, you’ll see some moving from north to south. You’ll see some moving from south to north. You’ll see some moving from west to east. And you’ll see some moving from eas… NO YOU WON’T!!

Don’t take my word for it; try it yourself. No matter what part of the Earth you live on, you’ll almost never see a satellite moving from east to west. Or if you haven’t the time, look at this satellite tracker; you’ll see that all the satellites are moving either on polar orbits (northward or southward) or on eastward-trending orbits. Nothing moves westward.

Now, what is the cause of that?! Why would satellite operators all around the world, from all the space-faring countries, only send up their satellites moving from west to east? Is it a conspiracy? A cultish, religious conviction that satellites moving into the light must always see the Sun rise in the east? A strange coincidence? Of course not. The reason to send satellites from west to east is completely practical. Sending up a satellite is extremely expensive, and one of the main costs is fuel (and the weight of that fuel, which requires even more fuel). Going west to east saves a lot of fuel, and therefore saves tons of money.

The reason it saves fuel is that an orbiting satellite relatively near the Earth’s surface (meaning within a few hundred miles, as is the case for the various space stations that are or were in orbit) must travel at 17000 miles per hour (28000 km per hour) relative to the Earth’s center in order to remain in a roughly circular orbit. (You can estimate this speed yourself, by timing satellites as they pass overhead.) But the Earth’s equator, near to the European Space Agency launching site in French Guiana, is already rotating 1040 miles per hour (1670 kph) from west to east relative to the Earth’s center. (At Florida latitudes, the location of Cape Canaveral, it is rotating at 914 mph, 1470 kph) This west-to-east motion gives a rocket launching toward the east a head start. Since is already moving west to east relative to the Earth’s center, the extra speed it has to obtain, if it heads eastward, is not a full 17000 mph; it need gain only about 16000 mph. That saves fuel! If instead it were to head east to west, the Earth’s spin would actually be a handicap, meaning that the rocket would need to change its speed by 18000 mph, and thus require much more fuel. (And more fuel at launch means the rocket is heavier, and that too requires more fuel!) So unless you’re crazy, or drowning in free money and fuel, you’d never launch your orbital satellite on a rocket heading east to west. And indeed, nobody does.

This, then, is a strong intuitive logical proof, one that any person can check for themselves by staring at the night sky, that the Earth is rotating west to east, and rather rapidly. If the Earth were not rotating at all, or if its rotation were very slow compared to 17000 mph, then there would be no fuel benefit to launching west-to-east satellites versus east-to-west ones, and so some countries might do it one way and others might do it the other way depending on their convenience. There would be no reason to expect east-to-west satellites to be absent. And since it’s easy to check for yourself (as I showed you) that the Earth’s circumference is about 25000 miles (40000 km), you can confirm yourself that a 24 hour rotation period gives the equator the speed I quoted above — more than 1000 mph (1600 kph), enough that rocket engineers would not ignore it.

I challenge you to come up with an alternative explanation. But still, this is an argument, not a proof, and it doesn’t by itself tell you how fast the Earth spins, or around which axis. The best demonstration, though barely within reach of modern technology, is much clearer and simpler than a Foucault pendulum… and Foucault knew all about it. That’s for next time.


Top Articles
Latest Posts
Article information

Author: Dong Thiel

Last Updated: 02/08/2023

Views: 6050

Rating: 4.9 / 5 (79 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.